晶体与非晶体的主要区别在哪里,晶体和非晶体的区别

描述

 什么是晶体

 晶体(crystal)是有明确衍射图案的固体,其原子或分子在空间按一定规律周期重复地排列。晶体中原子或分子的排列具有三维空间的周期性,隔一定的距离重复出现,这种周期性规律是晶体结构中最基本的特征。

 固态物质分为晶体和非晶体。从宏观上看,自然凝结的、不受外界干扰而形成的晶体都有自己独特的、呈对称性的形状,如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。

 当晶体从外界吸收热量时,其内部分子、原子的平均动能增大,温度也开始升高,但并不破坏其空间点阵,仍保持有规则排列。继续吸热达到一定的温度──熔点时,其分子、原子运动的剧烈程度可以破坏其有规则的排列,空间点阵也开始解体,于是晶体开始变成液体。在晶体从固体向液体的转化过程中,吸收的热量用来一部分一部分地破坏晶体的空间点阵,所以固液混合物的温度并不升高。当晶体完全熔化后,随着从外界吸收热量,温度又开始升高。而非晶体由于分子、原子的排列不规则,吸收热量后不需要破坏其空间点阵,只用来提高平均动能,所以当从外界吸收热量时,便由硬变软,最后变成液体。玻璃、松香、沥青和橡胶就是常见的非晶体。

 特征

 (1)自然凝结的、不受外界干扰而形成的晶体拥有整齐规则的几何外形,即晶体的自范性。

 (2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。

 (3)单晶体有各向异性的特点。

 (4)晶体可以使X光发生有规律的衍射。宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。

 (5)晶体相对应的晶面角相等,称为晶面角守恒。

 什么是非晶体

 非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,它没有一定规则的外形。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点,所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。玻璃体是典型的非晶体,所以非晶态又称为玻璃态。重要的玻璃体物质有:氧化物玻璃、金属玻璃、非晶半导体和高分子化合物。

 基本性质

 非晶体又称无定形体内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。 如玻璃、沥青、石蜡等。非晶态固体包括非晶态电介质、非晶态半导体、非晶态金属。它们有特殊的物理、化学性质。例如金属玻璃(非晶态金属)比一般(晶态)金属的强度高、弹性好、硬度和韧性高、抗腐蚀性好、导磁性强、电阻率高等。这使非晶态固体有多方面的应用。它是一个正在发展中的新的研究领域,得到迅速的发展。

 晶体与非晶体之间在一定条件下可以相互转化。例如,把石英晶体熔化并迅速冷却,可以得到石英玻璃。将非晶半导体物质在一定温度下热处理,可以得到相应的晶体。可以说,晶态和非晶态是物质在不同条件下存在的两种不同的固体状态,晶态是热力学稳定态。

 相互区别

 本质区别晶体有自范性,非晶体无自范性。

 物理性质晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。外形为无规则形状的固体。晶体有各向异性,非晶体多数是各向同性。晶体有固定的熔点,非晶体无固定的熔点,它的熔化过程中温度随加热不断升高。

 微观结构

 晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。

 组成晶体的微粒——原子是对称排列的,形成很规则的的结构图几何空间点阵;空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状;组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力;对每一个原子来说,其他原子对它作用的总效果,使它们都处在势能最低的状态,因此很稳定,宏观上就表现为形状固定,且不易改变;晶体内部原子有规则的排列,引起了晶体各向不同的物理性质;如果外力沿平行晶面的方向作用,则晶体就很容易滑动(变形),这种变形还不易恢复,称为晶体的范性;从这里可以看出沿晶面的方向,其弹性限度小,只要稍加力,就超出了其弹性限度,使其不能复原,而沿其他方向则弹性限度很大,能承受较大的压力、拉力而仍满足虎克定律;当晶体吸收热量时,由于不同方向原子排列疏密不同,间距不同,吸收的热量多少也不同,于是表现为有不同的传热系数和膨胀系数。 而非晶体一般没有这结构。

 晶体与非晶体的区别

 物质的存在状态一般有三种情况:固态、液态和气态。固体又分为两种存在形式:晶体和非晶体。

 所谓晶体就是指物质在熔化和凝固过程中,固态和液态并存时,温度保持不变,这类物质叫做晶体。例:海波、萘、石英、云母、明矾、食盐、硫酸铜、糖、味精、水晶、钻石、冰、干冰、霜、雪、冰雹、雪糕、各种金属。

 而非晶体是指物质在熔化和凝固过程中,其温度不断的变化,没有固定的熔点和凝固点。例:玻璃、蜡、松香、沥青、橡胶、塑料、布。

 (1) 从外形上观察:

 晶体都有自己独特的、呈对称性的形状。如食盐呈立方体;冰呈六角棱柱体;明矾呈八面体等。非晶体的外形则是不规则的。如沥青、玻璃、松香、石蜡等。

 (2)从温度上测量:

 晶体在熔化(或凝固)过程中温度保持不变,即有确定的熔点(或凝固点)。如冰(或水)的熔点(或凝固点)是0℃、海波的熔点(或凝固点)是48℃。非晶体在熔化(或凝固)过程中温度持续上升(或下降),没有确定的熔点(或凝固点)。在给物质加热过程中,我们可以借助实验温度计,在物质熔化时,测量其温度是否发生变化,如果温度不变的就是晶体,温度上升的就是非晶体。

 (3)从物质的状态上观察:

 晶体在熔化(或凝固)过程中呈固液共存态。如冰熔化时,先是有一部分冰化成水,然后,随着熔化的进行,冰越来越少,水越来越多,只到最后冰全部化成水。非晶体在熔化(或凝固)过程中先是整体变软(或变硬),然后流动性越来越大(或越小),最后变成液态(或固态)。如我们看到的蜡烛点燃时就是这样,靠近火焰的地方先变软再变成液态的蜡油。不像冰熔化时,尽管有一部分冰已经化成了水,而其它部分的冰仍然是很坚硬的固体。

 (4)从图像上看:

 根据晶体熔化(或凝固)时的温度不变这一特征,所以在晶体熔化和凝固图像上就表现为在它的变化曲线有一段是平滑的或者说是有一段图像曲线是与时间轴是平行的。而非晶体熔化(或凝固)时的温度变化曲线中则没有这一段。

相关推荐

相关文章