拉普拉斯变换有什么用?其物理意义是什么

什么是拉普拉斯变换

拉普拉斯变换是工程数学中常用的一种积分变换,又名拉氏变换。拉氏变换是一个线性变换,可将一个有参数实数t(t≥ 0)的函数转换为一个参数为复数s的函数。拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。

公式概念

拉普拉斯变换[2] 是对于t》=0函数值不为零的连续时间函数x(t)通过关系式

(式中st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。据此,在“电路分析”中,元件的伏安关系可以在复频域中进行表示,即电阻元件:V=RI,电感元件:V=sLI,电容元件:I=sCV。如果用电阻R与电容C串联,并在电容两端引出电压作为输出,那么就可用“分压公式”得出该系统的传递函数为H(s)=(1/RC)/(s+(1/RC)),于是响应的拉普拉斯变换Y(s)就等于激励的拉普拉斯变换X(s)与传递函数H(s)的乘积,即Y(s)=X(s)H(s)

如果定义:f(t)是一个关于t的函数,使得当t《0时候,f(t)=0;s是一个复变量;mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e‘ dt;F(s)是f(t)的拉普拉斯变换结果。

则f(t),的拉普拉斯变换由下列式子给出:F(s),=mathcal left =int_ ^infty f(t)’ e‘ dt  拉普拉斯逆变换,是已知F(s)’ 求解f(t)的过程。用符号 mathcal‘ 表示。

拉普拉斯逆变换的公式是:对于所有的t》0,f(t)= mathcal ^ left=frac int_ ^ F(s)’ e‘ds,c’ 是收敛区间的横坐标值,是一个实常数且大于所有F(s)‘ 的个别点的实部值。

为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:

如果对于实部σ 》σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为f(t)=L-1[F(s)]。

函数变换对和运算变换性质  利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。

拉普拉斯变化的存在性:为使F(s)存在,积分式必须收敛。有如下定理:

如因果函数f(t)满足:(1)在有限区间可积,(2)存在σ0使|f(t)|e-σt在t→∞时的极限为0,则对于所有σ大于σ0,拉普拉斯积分式绝对且一致收敛。

基本性质:线性性质、微分性质、积分性质、位移性质、延迟性质、初值定理与终值。

应用领域定理

有些情形下一个实变量函数在实数域中进行一些运算并不容易,但若将实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,

在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替常系数微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及提供控制系统调整的可能性。

应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。

拉普拉斯变换的物理意义是什么?

从正则系综配分函数切换到微正则系综态密度或者说谱密度的时候,所用的是拉普拉斯逆变换;反之是拉普拉斯变换。其中核的指数上的复数也很好理解,它经常出现于统计力学中的Lee-Yang理论(由李政道和杨振宁于1952年通过两篇论文建立):即复化之后的温度,化学势或者外磁场。

他们通过这种复化的方法推导出出了在热力学极限下,系统发生一级或者连续相变的条件(原文是对于自旋系统的):就像复分析里的branch cut一样,Lee-Yang零点在复平面上聚集成一条线,只有取实数值的物理量在相变是跨过这条线,才会发生一级相变。这些零点解释了为什么一个明明是解析函数的配分函数在相变时却能导致发散的物理量,也给出了一个no-go theorem: 不取热力学极限就不会发生相变;至今这套理论还是研究传统非拓扑相变的利器。有人会说复的物理学量只是数学技巧罢了,但近来有实验表明我们是能观测到Lee-Yang零点的, 跑偏一点,这套理论还衍生出Lee-Yang edge,即高于相变温度时,上述的Lee-Yang零点汇聚线终止于两个临界点,而用于描述该临界点附近复物理量的理论是一个central charge为-22/5的2维共形场论,叫非幺正minimal model.

因此拉普拉斯变换在研究3维纯量子引力(不含费米物质)特别是黑洞熵以及黑洞Hawking-Page相变的时候,经常出现在半经典近似中,因为如果假设AdS/CFT成立,复化的热力学量既属于2维渐进边界上的引力边界条件,也是边界2维共形场论的参数。可以参照下列Witten和尹希的文章(Maloney-Witten里(5.7)式附近把拉普拉斯逆变换写成拉普拉斯变换了)。

PS: Lee-Yang的原文里只考虑了复化的外磁场和化学势,叫做field-driven transition;复温度是1965年Michael E. Fisher引入的,叫temperature-driven transition,是一个nontrivial的推广,注意不要和有限温度场论中的虚时间混淆。

数学上,其实把拉普拉斯变换看成Borel变换的推广比看成是傅里叶变换的推广更合适,因为后者的指数上也没有虚数单位,专治非收敛级数,这和拉普拉斯变换代替傅里叶变换处理非收敛信号有异曲同工之妙。在物理中的用途嘛,最近在非微扰量子场论和弦论的resurgent analysis里火得不行呀

相关推荐

相关文章